$$
\frac{f(x)}{f(x)} = (x - \infty, \infty)
$$
\n
$$
f(x) = x
$$
\n
$$
f'(x) = 3x^2
$$
\n
$$
f'(x) = 1
$$
\n
$$
f'(x) = 6x
$$
\n
$$
f'(x) = 1 \qquad f'(x) = 6x
$$
\n
$$
f'(x) = \begin{cases} f(x) & f(x) = 3x^2 \\ f'(x) & f(x) = 3x^2 \end{cases} = (x)(6x) - (3x^2)(1)
$$
\n
$$
= 3x^2
$$

$$
\boxed{O(b)} \ T = (-\infty, \infty)
$$
\n
$$
f_1(x) = \sin(2x) \ f_2(x) = \sin(x)
$$
\n
$$
f_1(x) = 2\cos(2x) \ f_2(x) = \cos(x)
$$
\n
$$
f_1'(x) = 2\cos(2x) \ f_2'(x) = \cos(x)
$$
\n
$$
= \int f_1 \ f_2 \ f_1'(x) \ f_2'(x) = -2\sin(x) \cos(2x)
$$
\n
$$
= \sin(2x) \cos(x) - 2\sin(x) \cos(2x)
$$
\n
$$
= \sin(2x) \cos(x) - 2\sin(x) \cos(2x)
$$
\nWe want to show that this is in 't e4-44 to the zero. For which ∞ is not equal to 0.\n
$$
Let's find an x where W(f_1, f_2) is not equal to 0.
$$
\n
$$
= 0
$$
\n
$$
W(f_1, f_2)(0) = \frac{\sin(\omega)\cos(\omega) - 2\sin(\omega)\cos(2\omega)}{\omega} = 0
$$
\n
$$
= \frac{\pi}{2} \pi \left[\frac{\pi}{2} \int \frac{\pi}{2} e^{i\omega} \int \frac{\pi}{2} e^{i\omega} \int \frac{\pi}{2} \int \frac{\pi}{2
$$

Any x makes
$$
W(f_1, f_2) \neq 0
$$
.
Thus, $f_1(x) = sin(2x)$ and $f_2(x) = sin(x)$.
Use linearly independent on $T = (-\infty, \infty)$.

 $f(x) = \frac{1}{x}$ and $f_2(x) = x^2$ are linearly independent.

$$
z(a) Let y_{n} = c_{1}x^{2} + c_{2}x^{4}.
$$
\nLet $f_{1}(x) = x^{2}$ and $f_{2}(x) = x^{3}$.
\nThen $f_{1}(x) = 2x$ and $f_{2}(x) = 4x^{3}$.
\n $f_{1}(x) = 2$ and $f_{2}(x) = 12x^{2}$.
\n $f_{1}(x) = 2$ and $f_{2}(x) = 12x^{2}$.
\n $f_{1}(x) = 2$ and $f_{2}(x) = 12x^{2}$.
\n $f_{1}(x) = 2$ and $f_{2}(x) = 12x^{2}$.
\n $f_{1}(x) = 2$ and $f_{2}(x) = 12x^{3}$.
\nWe have $w + 2$ we have $w = 2x^{3}$
\n $w(f_{1},f_{2}) = \begin{cases} x^{2} & x^{3} - 2x^{2} \\ x^{3} & x^{4} - 2x^{3} \end{cases}$
\n $= 2x^{5} - 2x^{6}$
\n $= 2x^{5} - 2x^{6}$
\n $w(f_{1},f_{2})(1) = 2(1)^{5} = 2 + 0$.
\nSo f_{1} and f_{2} are linearly independent.
\nSo f_{1} and f_{2} are linearly independent.
\n $2y'' - 5 \times y' + 8y = 0$

This is true because plugging them into the
\nequation gives
\n
$$
x^{2}f_{1}^{''}-5xf_{1}^{'}+8f_{1} = x^{2}(2)-5x(2x)+8x^{2}=0
$$

\nand
\n $x^{2}f_{2}^{''}-5xf_{2}^{'}+8f_{2} = x^{2}(2x^{2})-5x(4x^{3})+8x^{4}=0$
\nBy step 1 and step 2 we know that every
\n $x^{2}y_{1}^{''}-5x y_{1}^{'}+8y=0$
\nis of the form
\n $y_{10}^{2} = c_{1}f_{1}+c_{2}f_{2} = c_{1}x^{2}+c_{2}x^{4}$
\n $y_{10} = c_{1}f_{1}+c_{2}f_{2} = c_{1}x^{2}+c_{2}x^{4}$
\n $y_{11} = c_{1}f_{1}+c_{2}f_{2} = c_{1}x^{2}+c_{2}x^{4}$
\n $y_{12}^{'}=0 y y_{1}^{''}=0$
\nThus, $y_{1}^{'}=0 y y_{1}^{''}=0$.
\nThus, $p_{10}g(y_{10}y_{10} + p_{11}y_{20} = 24 y_{10}y_{10} + p_{11}y_{20} = 24 y_{10}y_{10} = 24$
\n $y_{11}^{2} - 5x y_{1}^{'} + 8y_{12} = x^{2}(0) - 5x(0) + 8(3) = 24$.
\nSo, y_{1} is a particular solution by
\n $x^{2}y_{1}^{''}-5xy_{1}^{'}+8y_{2} = x^{2}(0) - 5x(0) + 8(3) = 24$.

26) By part (a) and (b) we get that
\na. formula for the general solution to
\n
$$
x^{2}y''-5xy'+8y=24
$$

\nis
\n $y=y_{n}+y_{p} = C_{1}x^{2}+C_{2}x^{4}+3$
\n $x^{2}y''-5xy'+8y=24$
\n
\n15 given by
\n $x^{2}y''-5xy'+8y=24$
\nis given by
\n $x^{2}y''-5xy'+8y=24$
\n16 We want this solution to satisfy
\n $y'(1)=0$ and $y(1)=-1$
\nWe have
\n $y''(1)=0$ and $y(1)=-1$
\nWe have
\n $y'=2c_{1}x+c_{2}x^{4}+3$
\n $y'=2c_{1}x+c_{2}x^{4}+3$
\n $y'=2c_{1}x+c_{2}x^{4}+3$
\n $y'=2c_{1}x+c_{2}x^{3}$
\n $y'(0)=0$

Solve for C₁ in ① to get c₁ = -4-c₂.
\nPlug this into ② to get 2(-4-c₂)+4c₂=0
\nThis gives -8-2c₂+4c₂=0.
\nThis gives 2c₂=8.
\nSo, C₂=4.
\nThus, C₁= -4-c₂= -4-4=0.
\nSo the solution to
\n
$$
x^{2}y^{n} - 5xy' + 8y = 24
$$
, $y'(1)=0$, $y(1)=-1$
\nis given by
\n $y = 0 \cdot x + (-1) \cdot x^{4} + 3$
\nor $y = -x^{4} + 3$
\n $y = -x^{4} + 3$
\nThis solution is the only solution to part (d)
\nThis solution is the only solution to part (d)
\nof this problem.

$$
\begin{array}{ll}\n\text{(3(a))} \text{Let } y_h = c_1 e^{2x} + c_2 x e^{2x} \\
\text{Let } f_1(x) = e^{2x} \text{ and } f_2(x) = xe^{2x} \\
\text{Then, } f_1'(x) = 2 e^{2x} \text{ and } f_2'(x) = e^{2x} + 2xe^{2x} \\
\text{If } f_1''(x) = 4 e^{2x} \text{ and } f_2''(x) = 2e^{2x} + 2(e^{2x} + 2xe^{2x}) \\
\text{Let } f_1''(x) = 4e^{2x} \text{ and } f_2''(x) = 2e^{2x} + 4xe^{2x} \\
\text{Let } f_1(x) = 4e^{2x} \text{ and } f_2''(x) = 2e^{2x} + 4xe^{2x}\n\end{array}
$$

 $\overline{ }$

Step 1: Show f, and f ₂ are linearly independent	
We have	$W(f_1, f_2) = \int f_1 f_2 = \int e^{2x} e^{2x} e^{2x} dx$
$W(f_1, f_2) = \int f_1 f_2 = \int e^{2x} e^{2x} (e^{2x} + 2xe^{2x}) dx$	
$= (e^{2x})(e^{2x} + 2xe^{2x}) - (2e^{2x})(xe^{2x})$	
$= (e^{2x})(e^{2x} + 2xe^{2x}) - 2xe^{2x} dx$	
$= e^{2x} (e^{2x} + 2x)e^{2x} - 2xe^{2x} dx$	
$= e^{2x} (e^{2x} + 2x)e^{2x} + 2xe^{2x} dx$	
$= e^{2x} (e^{2x} + 2x)e^{2x} + 2xe^{2x} dx$	
$= e^{2x} (e^{2x} + 2x)e^{2x} + 2xe^{2x} dx$	
$= e^{2x} (e^{2x} + 2x)e^{2x} + 2xe^{2x} dx$	
$= (e^{2x})(e^{2x} + 2x)e^{2x} + 2xe^{2x} dx$	
$= (e^{2x})(e^{2x} + 2x)e^{2x} + 2xe^{2x} dx$	
$= (e^{2x})(e^{2x} + 2x)e^{2x} + 2xe^{2x} dx$	
$= (e^{2x})(e^{2x} + 2x)e^{2x} + 2xe^{2x} dx$	
$= (e^{2x})(e^{2x} + 2x)e^{2x} + 2xe^{2x} dx$	
$= (e^{2x})(e^{2x} + 2x)e^{2x} + 2xe^{2x} dx$	

$$
\frac{\sqrt{16p} \cdot 2}{d^{2}y} - 4\frac{dy}{dx} + 4y = 0
$$
\nThis is 4x we because
\n
$$
f''_{1} - 4f'_{1} + 4f_{1} = 4e^{2x} - 4(2e^{2x}) + 4(e^{2x}) = 0
$$
\nand
\n
$$
f''_{2} - 4f'_{2} + 4f_{2} = 4e^{2x} + 4xe^{2x} - 4(e^{2x} + 2xe^{2x}) + 4xe^{2x} = 4e^{2x} + 4xe^{2x} + 4xe^{2x} = 0
$$
\nBy 4x = 4x² + 4x

$$
= 2e^{2x} + 8 \times e^{2x} + 4 \times e^{2x}
$$

\nSo, $9\log_{10} 9$ of into the left side of
\n
$$
\frac{d^{2}y}{dx^{2}} - 4\frac{dy}{dx} + 4y = 2e^{2x} + 4x - 12
$$
 $9^{1} \times e^{x}$
\n
$$
y''_{1} - 4y'_{1} + 4y_{1} = (2e^{2x} + 8xe^{2x} + 4x^{2}e^{2x})
$$
\n
$$
-4(2xe^{2x} + 2x^{2}e^{2x} + 1)
$$
\n
$$
-4(x^{2}e^{2x} + x - 2)
$$
\n
$$
= 2e^{2x} + x - 12
$$
\nSo, $y_{1} = 6\sqrt{xe^{2x} + 2x^{2}}e^{2x} + 1$
\n
$$
y_{2} = 2e^{2x} + 2e^{2x} + 1
$$
\n
$$
y_{3} = 2e^{2x} + 1
$$
\n
$$
y_{4} = 2e^{2x} + 1
$$
\n
$$
y_{5} = 2e^{2x} + 1
$$
\n
$$
y_{6} = 2e^{2x} + 1
$$
\n
$$
y_{7} = 2e^{2x} + 1
$$
\n
$$
y_{8} = 2e^{2x} + 1
$$
\n
$$
y_{9} = 2e^{2x} + 1
$$
\n
$$
y_{10} = 2e^{2x} + 1
$$
\n
$$
y_{11} = 2e^{2x} + 1
$$
\n
$$
y_{12} = 2e^{2x} + 1
$$
\n
$$
y_{13} = 2e^{2x} + 1
$$
\n
$$
y_{14} = 2e^{2x} + 1
$$
\n
$$
y_{15} = 2e^{2x} + 1
$$
\n
$$
y_{16} = 2e^{2x} + 1
$$
\n
$$
y_{17} = 2e^{2x} + 1
$$
\n
$$
y_{18} = 2e^{2x} + 1
$$
\n
$$
y
$$

$$
\begin{array}{|c|c|c|c|}\n\hline\n(3) & \text{From (c)} we want} \\
y &= c_1 e^{2x} + c_2 x e^{2x} + x^2 e^{2x} + x - 2 \\
y & \text{where } y'(0) = 0, y(0) = 1. \\
\text{Note: } y'(0) = 0, y(0) = 1.\n\end{array}
$$
\n
$$
\begin{array}{|c|c|c|c|}\n\hline\ny' &= 2c_1 e^{2x} + c_2 e^{2x} + 2c_2 x e^{2x} + 2x e^{2x} + 2x e^{2x} + 1 \\
y' &= 2c_1 e^{2x} + c_2 e^{2x} + 2c_2 x e^{2x} + 2x e^{2x} + 2x e^{2x} + 1 \\
\hline\ny'(0) = 0 & \text{or } e^{2x} + c_2 e^{2x} + 2c_2 x e^{2x} + 2x e^{2x} + 2x e^{2x} + 2x e^{2x} + 2x e^{2x} + x - 2 \\
\hline\n\end{array}
$$
\nThus, the solution we are looking for is

\n
$$
y = 3e^{2x} - 6 \times e^{2x} + x^2 e^{2x} + x - 2
$$

(4) $[a]$	Let $y_h = c_1 x^{-1/2} + c_2 x^{-1}$.	These
Let $f_1(x) = x^{1/2}$ and $f_2(x) = x^{-1}$.	These	
Then, $f_1'(x) = -\frac{1}{2}x^{-3/2}$ and $f_2'(x) = -x^{-2}$.	Also	
And, $f_1''(x) = \frac{2}{3}x^{-5/2}$ and $f_2''(x) = 2x^{-3}$.	See	
And, $f_1''(x) = \frac{2}{3}x^{-5/2}$ and $f_2''(x) = 2x^{-3}$.	See	
Step 1: Show that f_1 and f_2 are linearly		
We have that	and f_2 are linearly	
We have that	$f_1 = \frac{1}{2} \left(\frac{x^{-3/2}}{2} - \frac{x^{-2}}{2} \right)$	
$W(f_1, f_2) = \int f_1'(f_2') = \int -\frac{1}{2}x^{-3/2} \cdot \frac{x^{-1}}{2} dx$		
$= (x^{-1/2})(-x^2) - (-\frac{1}{2}x^{-3/2})(x^{-1})$		
$= -x^{-1/2-2} + \frac{1}{2}x$		
$= -x^{-5/2} + \frac{1}{2}x$		
$= -\frac{1}{2}x^{-5/2}$		
This is not the zero function on x since		
for example at $x = 1$ we get		
We $(f_1, f_2)(1) = -\frac{1}{2}(1)^{-5/2} = -\frac{1}{2} \neq 0$.		

Thus, f, and f₂ are linearly independent
\non
$$
L = (0, \infty)
$$
.
\n
\n
$$
S_{\frac{1}{2}k} = 2
$$
 Show that f, and f₂ solve
\n
$$
2 \times 9^{11} + 5 \times 9^{11} + 9 = 0
$$
\n
$$
7 \times 10^{11} + 10 = 2 \times 2(\frac{3}{4}x^{5/2}) + 5 \times (-\frac{3}{2}x^{5/2}) + x^{-1/2}
$$
\n
$$
2 \times 10^{11} + 5 \times 10^{11} + 10 = 2 \times 2(\frac{3}{4}x^{5/2}) + 5 \times (-\frac{3}{2}x^{5/2}) + x^{-1/2}
$$
\n
$$
= 0
$$
\nand
\n
$$
2 \times 10^{21} + 5 \times 10^{21} + 5 \times 10^{21} + 5 \times 10^{21} + x^{-1/2}
$$
\n
$$
= 0
$$
\nand
\n
$$
2 \times 10^{21} + 5 \times 10^{21} + 5 \times 10^{21} + 5 \times 10^{21} + x^{-1}
$$
\n
$$
= 0
$$
\n
$$
S_{\text{a}} + 1 \text{ and } f_{\text{2}} \text{ both solve } 2 \times 10^{11} + 5 \times 10^{
$$

$$
|4(b)| \text{ Let } y_{\rho} = \frac{1}{15}x^{2} - \frac{1}{6}x.
$$
\nThen, $y_{\rho}^{1} = \frac{2}{15}x - \frac{1}{6}$
\nAnd, $y_{\rho}^{1} = \frac{2}{15} \cdot \$

$$
\begin{array}{c}\n\textcircled{4} \\
\textcircled{4} \\
y = c_1 \times 12 + c_2 \times 16^2 + 15 \times 16^2 +
$$

where
\n
$$
y'(1) = 0
$$
 and $y(1) = 0$.
\nWe have $y' = -\frac{1}{2}c_1x^3/2 - c_2x^2 + \frac{2}{15}x - \frac{1}{6}$

So we must solve
\n
$$
\frac{50}{4}(1) = 0
$$
\n
$$
\frac{1}{2}c_1(1)^{-1/2} + c_2(1)^{-1} + \frac{1}{15}(1)^{-1} = 0
$$
\n
$$
c_1(1)^{-1/2} + c_2(1)^{-1} + \frac{1}{15}(1)^{-1} = 0
$$
\n
$$
c_1(1) = 0
$$
\n
$$
c_1 + c_2 = \frac{1}{10}
$$

Solving 1 for c₂ gives $c_2 = -\frac{1}{2}c_1 - \frac{1}{30}$.
Plug this into 2 gives $c_1 + (-\frac{1}{2}c_1 - \frac{1}{30}) = \frac{1}{10}$. $\int_{0}^{2} 12 \frac{1}{2}$ $C_1 = \frac{2}{15}$. Thus, $C_1 = \frac{4}{15}$ (\mathcal{C}_2) And, $c_2 = -\frac{1}{2}c_1 - \frac{1}{30} = -\frac{1}{2}(\frac{4}{15}) - \frac{1}{30} = \frac{-5}{30} = -\frac{1}{6}$ So, the solution we are looking for is $y = \frac{4}{15}x^{-1/2} - \frac{1}{6}x^{-1} + \frac{1}{15}x^{2} - \frac{1}{6}x$